Dosimetry of small bone joint calculated by the analytical anisotropic algorithm: a Monte Carlo evaluation using the EGSnrc

نویسندگان

  • James C. L. Chow
  • Runqing Jiang
  • Amir M. Owrangi
چکیده

This study compared a small bone joint dosimetry calculated by the anisotropic analytical algorithm (AAA) and Monte Carlo simulation using megavoltage (MV) photon beams. The performance of the AAA in the joint dose calculation was evaluated using Monte Carlo simulation, and dependences of joint dose on its width and beam angle were investigated. Small bone joint phantoms containing a vertical water layer (0.5-2 mm) sandwiched by two bones (2 × 2 × 2 cm3) were irradiated by the 6 and 15 MV photon beams with field size equal to 4 × 4 cm2. Depth doses along the central beam axis in a joint (cartilage) were calculated with and without a bolus (thickness = 1.5 cm) added on top of the phantoms. Different beam angles (0°-15°) were used with the isocenter set to the center of the bone joint for dose calculations using the AAA (Eclipse treatment planning system) and Monte Carlo simulation (the EGSnrc code). For dosimetry comparison and normalization, dose calculations were repeated in homogeneous water phantoms with the bone substituted by water. Comparing the calculated dosimetry between the AAA and Monte Carlo simulation, the AAA underestimated joint doses varying with its widths by about 6%-12% for 6 MV and 12%-23% for 15 MV without bolus, and by 7% for 6 MV and 13%-17% for 15 MV with bolus. Moreover, joint doses calculated by the AAA did not vary with the joint width and beam angle. From Monte Carlo results, there was a decrease in the calculated joint dose as the joint width increased, and a slight decrease as the beam angle increased. When bolus was added to the phantom, it was found that variations of joint dose with its width and beam angle became less significant for the 6 MV photon beams. In conclusion, dosimetry deviation in small bone joint calculated by the AAA and Monte Carlo simulation was studied using the 6 and 15 MV photon beam. The AAA could not predict variations of joint dose with its width and beam angle, which were predicted by the Monte Carlo simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code

Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...

متن کامل

Evaluation of AAA and XVMC Algorithms for Dose Calculation in Lung Equivalent Heterogeneity in Photon Fields: A Comparison of Calculated Results with Measurements

Aims: The aims of the present work are (1) to evaluate dose calculation accuracy of two commonly used algorithms for 15 MV small photon fields in a medium encompassing heterogeneity and (2) to compare them with measured results obtained from gafchromic film EBT2.Materials and Methods: Authors employed kailwood (Pinus Wallichiana) to mimic lung. Briefly, seven Kailwood plates, each measuring 25x...

متن کامل

Accuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...

متن کامل

Small photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation

Background: Small photon fields are increasingly used in modern radiotherapy especially in intensity modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) treatments. Accurate beam profile and central axis depth doses measurements of such beams are complicated due to the electron disequilibrium. Hence the EBT2 (external beam therapy) Gafchromic film was used for dosimetry of sm...

متن کامل

Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry

The purpose of this study is to investigate the influence of lung heterogeneity inside a soft tissue phantom on percentage depth dose (PDD). PDD curves were obtained experimentally using LiF:Mg,Ti (TLD-100) thermoluminescent detectors and applying Eclipse treatment planning system algorithms Batho, modified Batho (M-Batho or BMod), equivalent TAR (E-TAR or EQTAR), and anisotropic analytical alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013